河川監視カメラ画像を用いた 低コストかつ汎用的な 水面検知システムの開発

令和7年6月20日

能登谷祐一・神瀬 史雄・芥田 直輝・守谷 将史・辻倉 裕喜 建設技術研究所 大阪本社水システム部

- 1. はじめに
- 2. 水面検知手法
- 3. 実フィールドにおける精度検証
- 4. おわりに(得られた結果)

[1. はじめに]研究の背景・目的等

河川管理者が膨大な情報の中、迅速・的確な判断を下すことは容易でない ⇒カメラ画像から危険度をアラート表示し、省力化につなげたい

【背景・社会的課題】

• 豪雨時に河川管理者は、タイムリーかつ適切に災害対応・情報発信することが求められる。

- 入ってくる情報は多種多様かつ膨大
- 河川監視カメラのみ設置された箇所において、目視で判断する他なく、 見逃しが生じる可能性もある。
- 深刻な人材不足も続いている。

【目的】

カメラ画像から水陸境界位置を捉え、危険度をアラート表示し 見逃し防止や省力化につなげたい

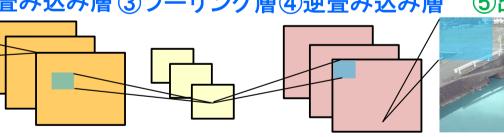
[1. はじめに] 既往研究の概要

一般的な既往手法(CNN): 水面域を人の手で大量にラベリングしたものを学習

水面域をラベリング

学習用画像

予測



予測(運用時)は学習した パラメータにより入力層~ 出力層の予測計算のみ行う

(1) 予測計算

②畳み込み層③プーリング層④逆畳み込み層 ⑤出力層 ①入力層

学習画像

CTi

CNNによる画像データの特徴抽出

水面検知結果

正解画像 との比較

比較

(2)損失計算

(3) パラメータ更新

最適化関数 (例:SGD) による 各パラメータの更新

正解画像に対する損失関数 (例:交差エントロピー誤差)

正解画像

[1. はじめに] 既往研究の課題

既往手法として広く用いられるCNNの課題は以下の通り

●既往研究の主な課題

<u>高コスト</u>:

大量の学習データを作成する必要があり、モデル構築におけるコストが大きい。

低い汎用性:

汎用性が低く、構築済みのモデルを新たな撮影対象地点に適用する場合に 十分な精度が得られにくい。

<u>日照・撮影条件変化に対する低い頑健性:</u>

画像の明るさや霧・もやの発生など、撮影環境の変化に弱く、 重要な水陸境界部分をうまく捉えられない場合がある。

本研究ではこれら課題に対する克服を狙った

[2. 水面検知手法] 処理フロー

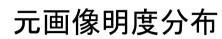
大きく3工程で処理フローを構成する

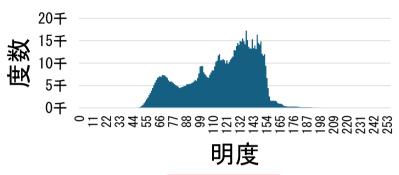
元画像 【画像の高画質化・鮮明化】 程 a) ブロックノイズの除去 【Real-ESRGAN による超解像処理】 【ヒストグラム均等化による画像鮮明化処理】 b) 画像の鮮明化 【画像中の水面領域の抽出】 程 a) Image Mattingによる水面領域の抽出 b) エントロピーによる水面領域の抽出 2 【AI技術で水面確率を出力】 【乱雑さの指標で水面確率を出力】 c) 出力結果(水面確率)の合成 【上記2手法を合成してより高精度の水面確率を出力】 【水陸境界位置の判定】 程 a) 射影変換 【画像のピクセル位置と実空間の標高を対応させる】 3 b) フィッシャーの評価基準による水陸境界位置の判定 【水面確率をもとに水陸境界位置を高精度で判定】 越水や溢水の有無水位

[2. 水面検知手法] 工程①:画像の高画質化・鮮明化

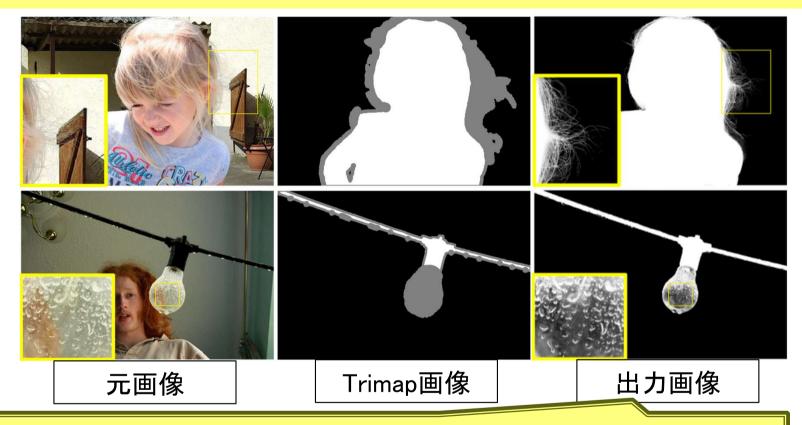
Real-ESRGANを用いてブロックノイズを除去

- ・ブロックノイズ(モザイク状のノイズ)は 画像容量圧縮に起因して生じる場合が 多く、水位判読誤差の要因となる。
- ・本処理により、ブロックノイズが概ね除去 され、滑らかな画像が得られる。
- ・水陸境界部を捉える目的から、物体の エッジを残しつつ、画像としては滑らかに する必要がある。→AI的手法が良好


[2. 水面検知手法] 工程①:画像の高画質化・鮮明化

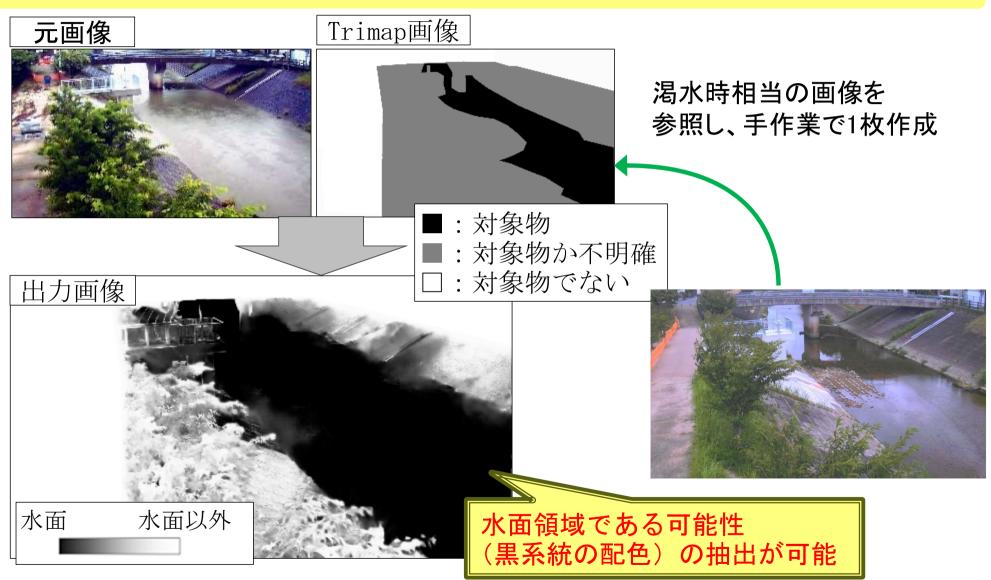

ヒストグラム均等化を用いて画像を鮮明化

•画像中の濃淡を明瞭化し、 もやがかるような場合でも水陸境界を鮮明に


ヒストグラム均等化後 明度分布

・明度の分布を広く分散させる

Image Mattingの概要(Trimap画像による前景抽出)



- 確実に前景(注目の対象)、確実に背景(対象外)、境界が曖昧の領域を 白色/黒色/灰色に塗り分けたTrimap画像と元画像から、前景(注目 の対象)の領域(確率)を出力する。
- ・物体の「境界」に注目したAI技術で汎用性が高い。

出典: Lu, Hao, et al. "Indices matter: Learning to index for deep image matting." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019.

Image Mattingにより水面領域を抽出

実用上、岸の植生は水位判定の障害となるケースが多い

⇒植生に注目し、エントロピーにより水面領域を抽出

エントロピーHの式

$$H = -\sum_{i} p(i) \log_2 p(i)$$

※*i*:グレースケールの輝度値 *p(i)*: 輝度値*i*の出現確率

多くの場合、

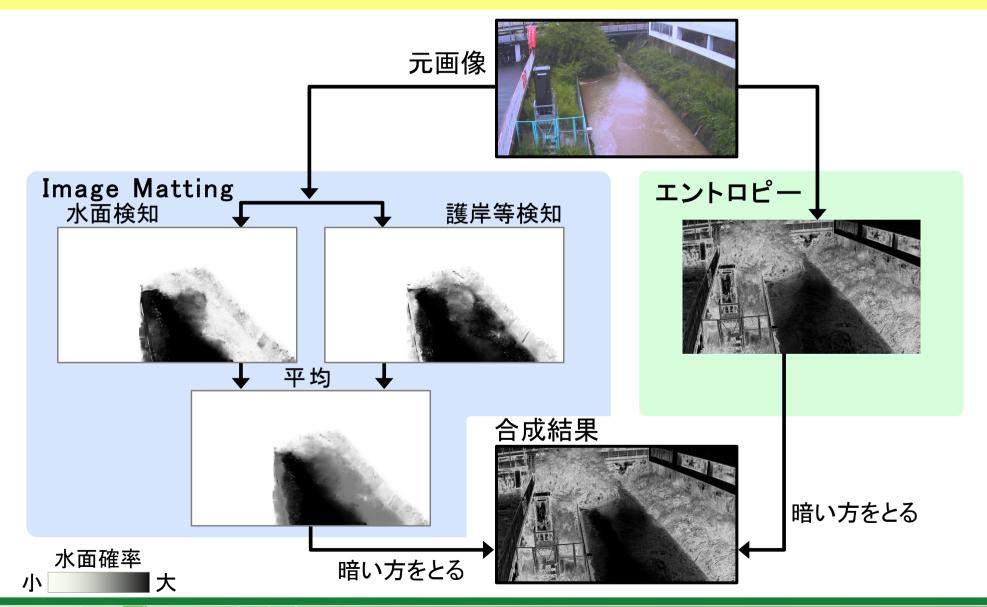
- ・水面はのっぺりとした(平坦な)パターン
- 岸(陸部)はごちゃごちゃした(乱雑な)パターン

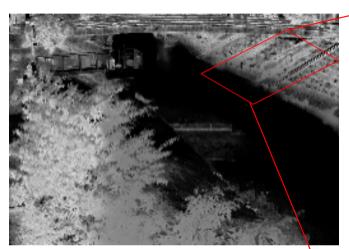
エントロピーが小さい領域 は水面の可能性が高い

より植生などの水面以外

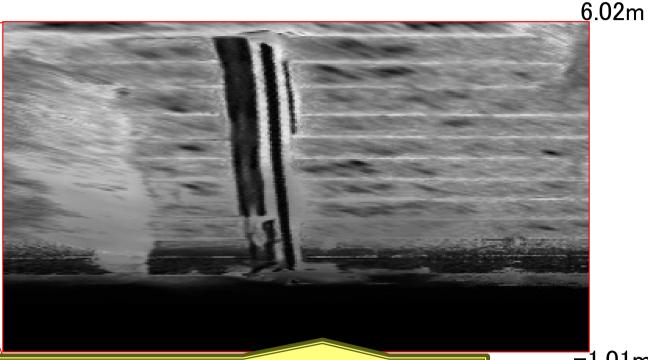
の抽出が可能

工程①による効果を確認



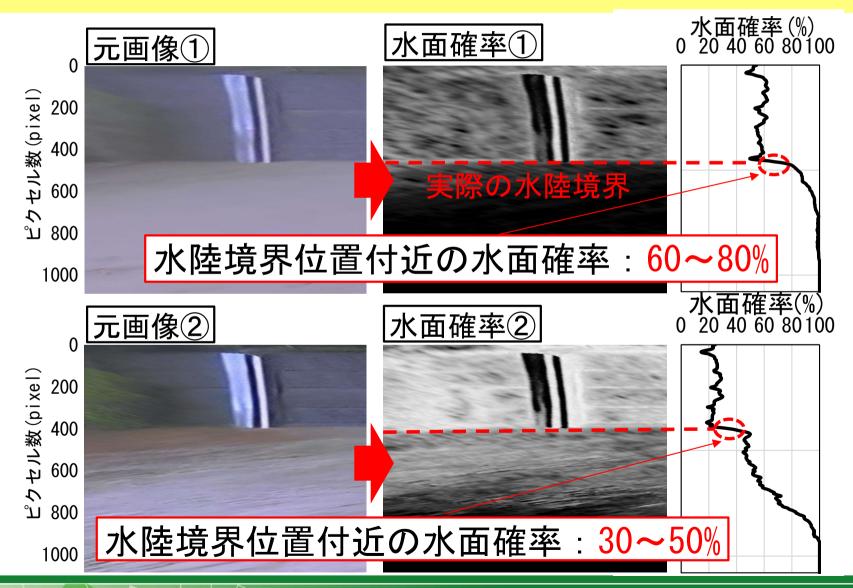

元画像に対するエントロピー: ブロックノイズに起因し, 判定結果が明るくなる(実際に水面でも水面確率を低く評価する)傾向にある

エントロピーの値 小 大

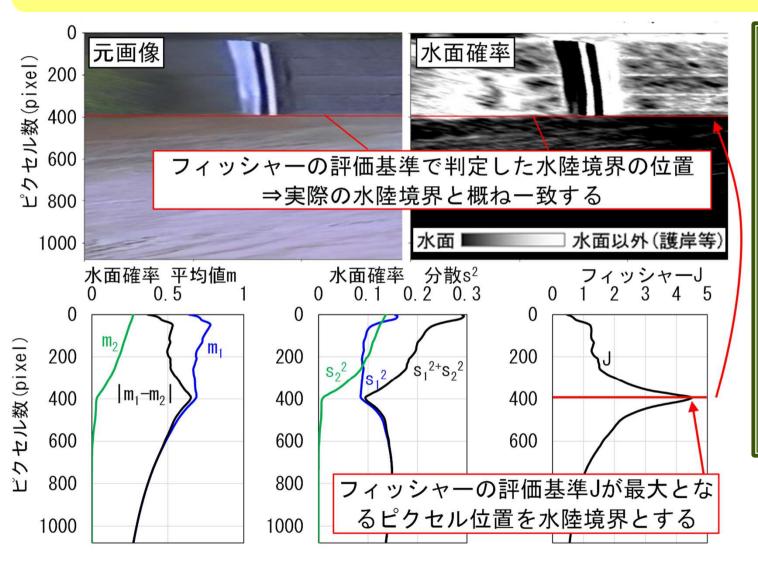

Image Mattingによる結果とエントロピーによる結果を合成

射影変換により、真横から見たような画像に変換→m単位に対応付け

水面確率 小 **□ ■ ■** 大



=1.01m


水面境界部を拡大し、真横から見た画像に変換

画像空間[pixel]と実空間[m]との対応を容易にする

下から水面確率(平均値)を追って、初めて50%を下回った所が陸? ⇒撮影条件(日照条件等)による画像ごとの判定ゆらぎが問題となる

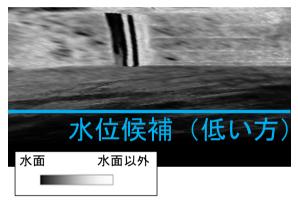
フィッシャーの基準を応用し、面的パターンを評価 ⇒ 頑健性向上を図った

フィッシャーの基準J の式

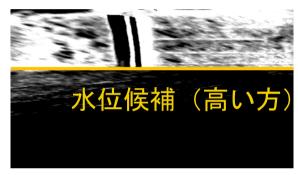
$$J = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2}$$

m₁:境界線上部 水面確率平均

m₂: 境界線下部 水面確率平均


s₁:境界線上部 水面確率分散

s₂: 境界線下部 水面確率分散


水陸境界位置候補を2つ挙げた後に、相関により最終選定する構成

⇒水面確率の判定むらに対し、さらなる頑健性の向上を図った。

 フィッシャーの 基準により推定

② コントラスト調整後画像に対し フィッシャーの基準により推定

地点特有の経時的判定むらにあわせてコントラストを調整

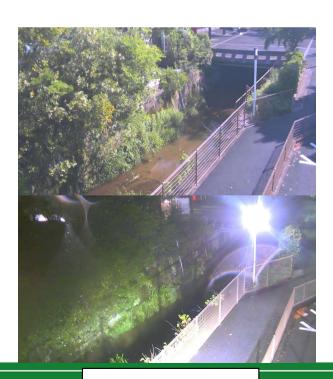
コントラスト調整により 水面確率分布(明暗)を明瞭化

③ 2つの水位候補により領域を3つ (αh) に分割

- ④相関値により2つの候補から1つに絞る
- ・エリア β とエリア γ のパターン分布が似ている(相関値大) \Rightarrow 水位候補の<u>高い方の水位</u>を選定
- ・エリア β とエリア α のパターン分布が似ている(相関値大) ⇒水位候補の低い方の水位を選定
 - ※この例では水位候補の高い方を選定

[3. 実フィールドにおける精度検証] 検証条件

3地点を抽出して、開発手法を適用し、妥当性を確認する。


地点抽出の観点

- 法面が十分に大きく写っているか
- •植生に阻害されていないか
- 夜間の視認性は十分か

適用可能性の(主観的)期待値別に抽出

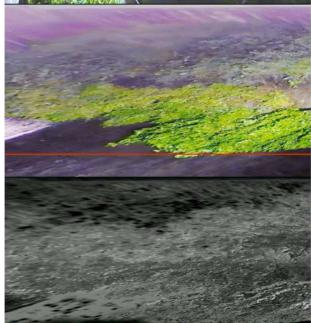
[3. 実フィールドにおける精度検証] 検証結果

洪水への適用例(動画)

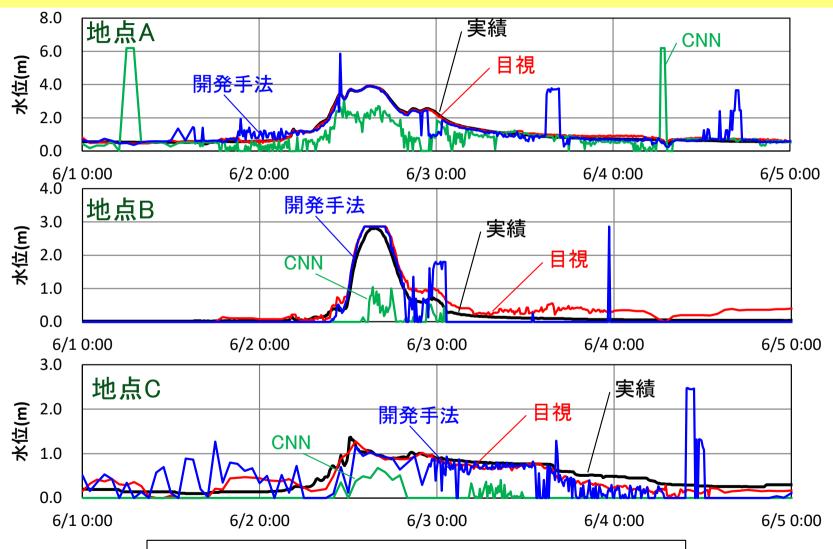
期待高

期待中

期待小


元画像

計影変換


-: 最終判定した水位、-水位候補(上)、-、水位候補(下)

」: 射影変換範囲

水面 水面以外

[3. 実フィールドにおける精度検証] 検証結果

しばしば異常値が見られるものの、既往手法と比較し良好な精度となる

—: 実績水位、 —: 算定水位(開発手法)

-: 算定水位(CNN)、—: 算定水位(目視)

[4.おわりに(得られた結果)]

検討成果

- 複数の画像解析技術を組み合わせ、汎用性が高く、頑健性を持ち、低コストでモデル化できるスキームを開発した。
- 実フィールドに適用し、既存の技術と比較して、有用性を確認した。
- 河川監視の手法として、河川監視カメラの有力な活用方法の一つとなると考える。 ※特許申請中

課題

- 今回開発したスキームにおいても、異常値が生じることもある。適する 撮影条件の検証やアルゴリズムの改善、異常検知・補正など今後改良 を図りたい。
- 精度やコスト、運用方法の観点で、河川監視カメラと水位計とを比較し、 メリット/デメリットがある。社会実装に当たり、河川空間の視覚的監視 や流量観測用途との組み合わせなど、総合的に具体の活用方法を模 索したい。

[4.おわりに(得られた結果)]

水位計/河川監視カメラの長所・短所と適した場面は以下のとおり

	水位計	カメラ+画像解析
メリット	・水位測定精度が高い	既設の監視カメラが活用できる水面状況(水位, 溢水の有無等)の監視と合わせて河川空間の 監視が可能カメラの新設は水位計よりやや 安価
デメリット	・ 水位計の設置が必要・ 水位計の設置はカメラよりやや高価・ 水位の情報のみ	・撮影条件によっては検知精度が低下・水位の精度は水位計に劣る
価格※	約30~100万円/地点	約25~90万円/地点
適した 場面	・ 高精度の水位測定が必 要	活用できる既設の監視カメラがあり、あわせて河川空間を監視したいできるだけ安価に監視したい

