ADCP搭載型ラジコンボートによる低水流量観測技術の開発

〇橘田隆史、山内猛、吉川世里子、本田卓也

SJIHSDIT 株式会社ハイドロシステム開発


Hydro Systems Development, Inc.

1. はじめに

低水流量観測用のADCP搭載ラジコンボートを開発した

【目的】

早瀬での安全な観測 省人化,省力化, 現場時間の短縮, DX化, 多用途データの取得、など 簡易点群計測にも応用可能.

2. EZ-Boat200 / 500

橋上操作艇に脱着式スラス ターを搭載した。可搬性と 動力性能の両立を実現,<mark>RC</mark> 利用と橋上観測の兼用設計。

【機器構成】

脱着式スラスターユニット, ADCP, IMU, GNSSコンパ ス、遠隔操作ユニット、プロポ操 作、カメラ内蔵、ソフト。

【ボート諸元】

EZ-Boat200: 脱着性能重視型 従来の橋上操作艇にそのまま後付で脱着型 スラスターを搭載可能

EZ-Boat500:ハイパワー型

高出力スラスターを搭載し、スタビライザー

で船体の姿勢を維持。Batt.は船体収納。			
仕様	EZ-Boat 200 / 500		
寸法	全長144cm, 幅83~120cm(サイドハル拡張時)		
重量	ボート単体:15kg, 全搭載:35kg		
船速	EZ-Boat200:最大船速1.8m/s,巡航1.2m/s		
	EZ-Boat500:最大船速3.1m/s,巡航2.1m/s		
電源	EZ-Boat200:最大船速で15分,巡航40分		
	EZ-Boat500:最大船速で35分,巡航60分		
操縦距離	プロポで見通し距離300m		
遠隔操作	ADCP観測:docomo回線 / Wifi無線		
吃水深	EZ-Boat200:船体21cm,ADCP:7.5cm		
	EZ-Boat500:船体24cm,ADCP:8.5cm		
最低水深	流速計測:40cm 測深:24cm		
3.5	140		
3.0	120		
2.5 S	100		

出力70%で船速2.1m/s⊌

バッテリー出力値(%)

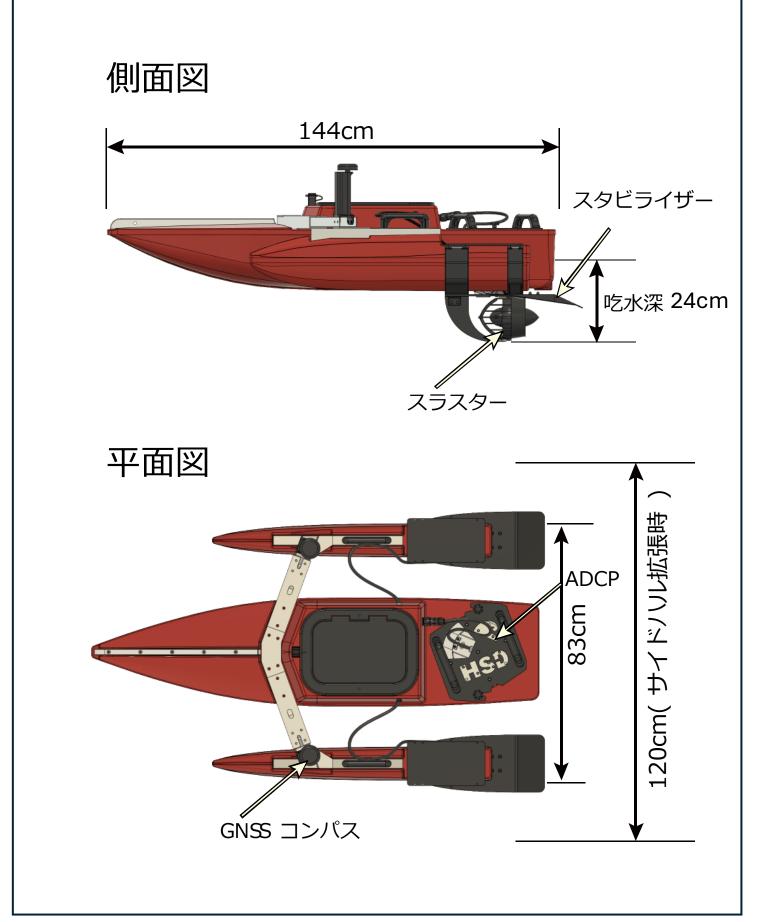
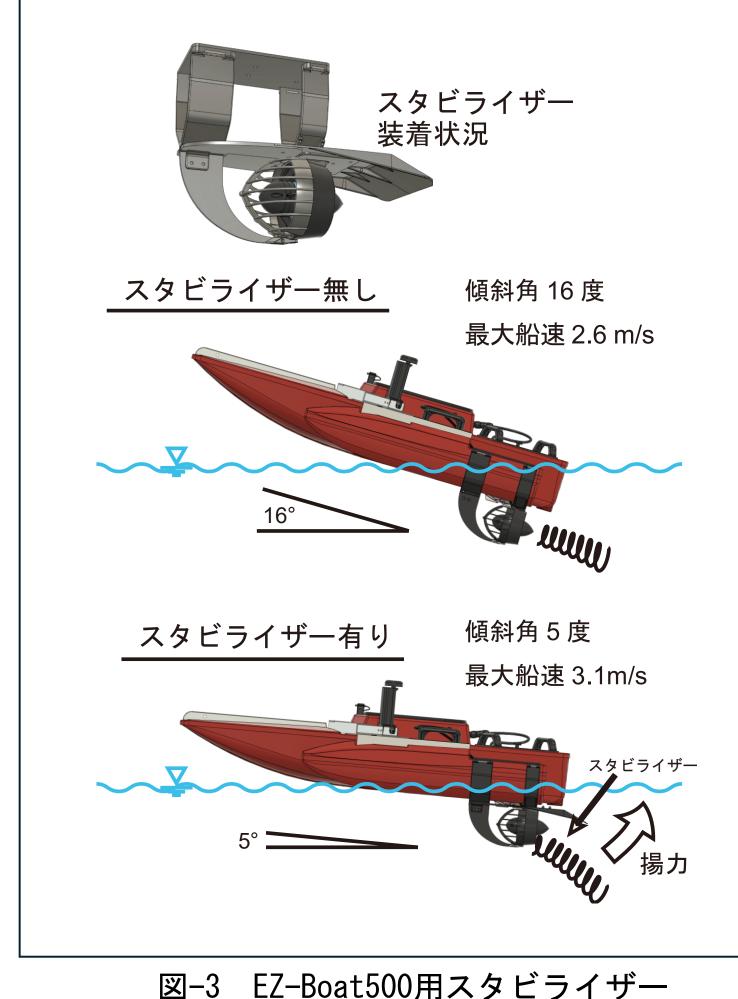



図-2 EZ-Boat200/500の外観

EZ-Boat200による早瀬での試験結果

【観測場所】

小矢部川津沢観測所 川幅30m,最大水深1.4m 最大流速1.5m/s

【現行法】

ワイヤー架線し、ゴムボートと プロペラ流速計で流速計測, スタッフで水深計測.

5人で1時間15分程度の作業時間.

【ADCP法】

RCボートで流速と断面形状 の同時計測

3人で2往復4計測に30分ほど. 両岸に1名づつ監視員待機.

ADCP操作は事務所から遠隔. 河岸際での植生によるプロペラ トラブルに注意。

小矢部川 津沢地点 最大流速1.53m/s

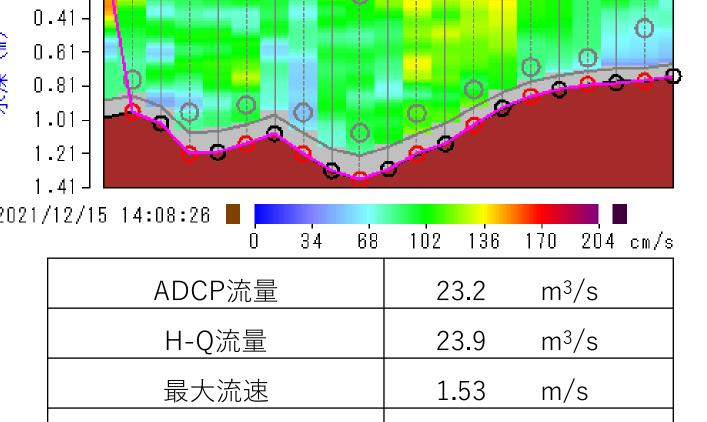


図-4 EZ-Boat200による観測結果

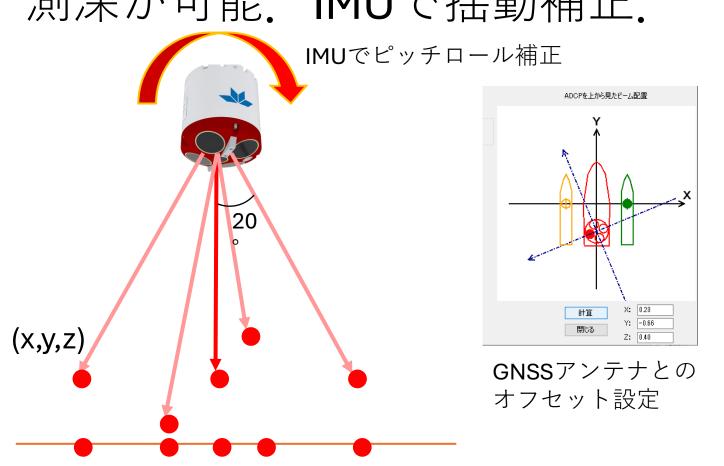
ADCP計測時間

30.4 m

50 秒

【ADCPによる流量算出】

現行法と計算方法を合わせるために、ADCPデータについても 横断方向10区分に分け、2点法で流速を抽出して流量を算出


ADCP流量は現行法と3%程度の差で精度的には遜色ないこと が確認できた。

※比較データ:国土交通省 水文水質データベース 2025年4月閲覧

5. 早瀬での簡易3次元測量(付加価値)

【計測原理】

ADCPの5つのビームそれぞれに XYZ座標を紐付け.5点簡易点群 測深が可能.IMUで揺動補正.

【早瀬での観測】

流速2.6m/sの早瀬でジグザグ 航走により流速分布と河床形状 を同時計測. 点群は1mグリッド に変換.

【本手法のメリット】

浅い早瀬ではマルチビームなど の3次元測量機では大がかりに なり持ち込めない、濁りや気泡 によりグリーンレーザーでも 計測困難。この様な場所で 簡易的に3次元測量が可能.

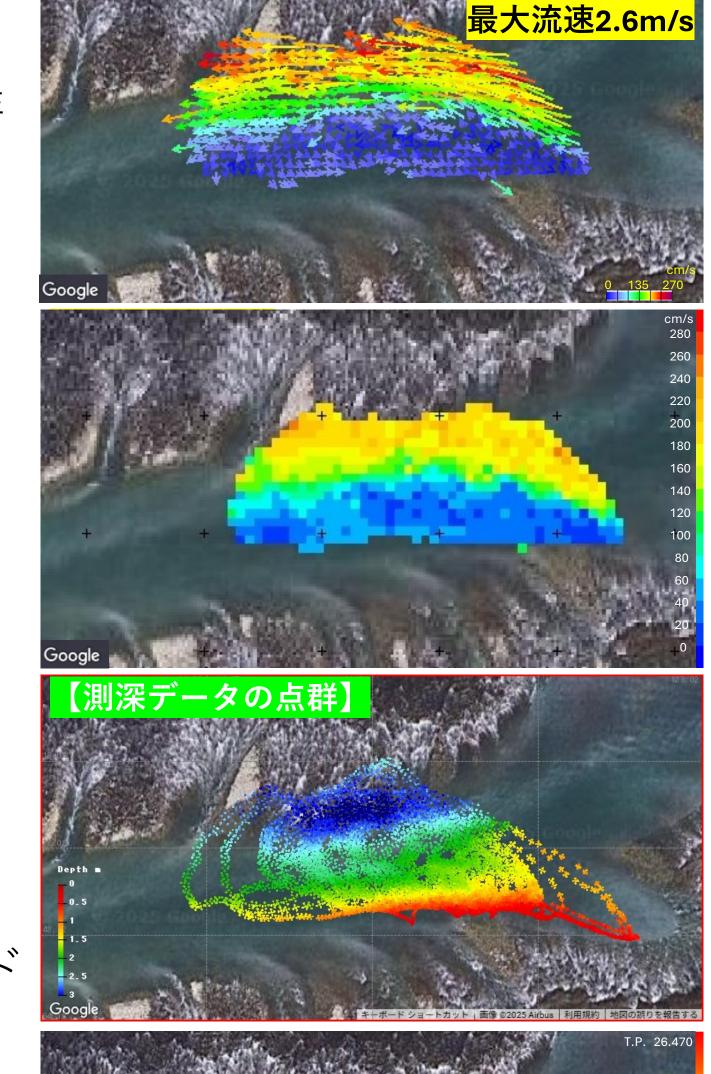


図-5 EZ-Boat500による河床3次元測量

4. 現行法との比較

	現行法 (シングルポイント)	ADCP搭載型 ラジコンボート	
安全性	早瀬で流水に立ち入る有人観測リ スク	早瀬でも安全な観測が可能	
人員	5名程度必要	現場3名, ADCPオペは遠隔可能	
作業時間	有人船の場合は1~2時間必要	川幅30m, 2往復4計測で30分程度	
作業性 労力	ワイヤー架線, ボート準備, 流速. 測深	現地では基本的にラジコン操作のみ	
DX対応	ストップウォッチで流速計測し野帳 に手書き	DX化に完全対応	
流速計測	横断8~11区分,深さ方向2点	横断1mピッチ, 層厚2cm~	
測深	スタッフ or 間縄での手計測	ADCPのボトムトラック 5点計測	
付加価値	8~11区分断面の流速,横断データのみ	流速の断面分布,詳細な横断形状, 流砂計測,浮遊砂解析,3次元河床 地形,超音波濁度など多種のデータ 取得可能	

6. まとめ

【本手法の有効性】

早瀬でも流水に立ち入ること無く安全に観測できる.

省人化と時間短縮効果は顕著である。月3回の低水流観の人員を 大幅に低減可能.

【EZ-Boat200 / 500 の選択基準】

既存の橋上操作艇(UHSB)所有者は、脱着式スラスターユニットの 追加購入のみで、EZ-Boat200にアップデート可能、 新規導入の場合はEZ-Boat500を推奨.

【低水流量観測における適用性】

6割深においてADCPの実測データを採用するには水深40cm以上. 最大船速の7割程度が横断観測の限界,それを超える場合は橋上 操作観測へ移行. (EZ-Boat500の場合は流速2.1m/s程度)