2025年度河川技術シンポジウム

画像解析と準三次元流況解析を活用した安倍川における令和4年台風第15号の流量推定

国土交通省 静岡河川事務所 流域治水課 : 酒井大介、荒川貴都、冨田遼

いであ株式会社 名古屋支店 河川部 : 小林雄介、小川絵莉子、森充弘

目次

1.はじめに

2.手法

- 画像解析と準三次元流況解析の活用
- 検証対象洪水(2つの洪水による段階的検証、洪水概要)

3.結果と考察

- 令和6年6月洪水の流量推算
- 令和4年9月洪水の流量推算

4.おわりに

- 本手法の利点
- 本手法実施にあたってのポイント
- 今後の課題
- 将来的に期待される展開

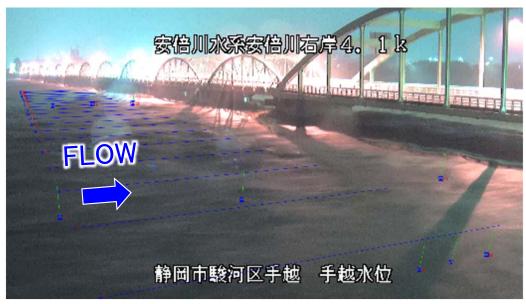
1. はじめに 背景

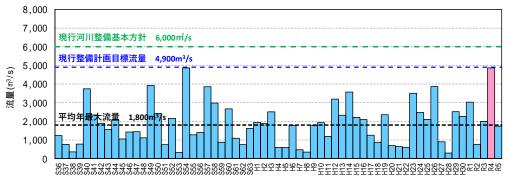
□大規模な洪水流量の重要性

● 高水計画への活用、被災実態把握・対策検討、等

□観測技術

- データの精緻化:面的な地形データ、洪水時流況の動画
- 流量観測:浮子観測から非接触観測に移行しつつある


□水理解析技術


● 高度な解析技術の実務への適用:水深に応じた流速を算定可能な準三次元流 況解析、等

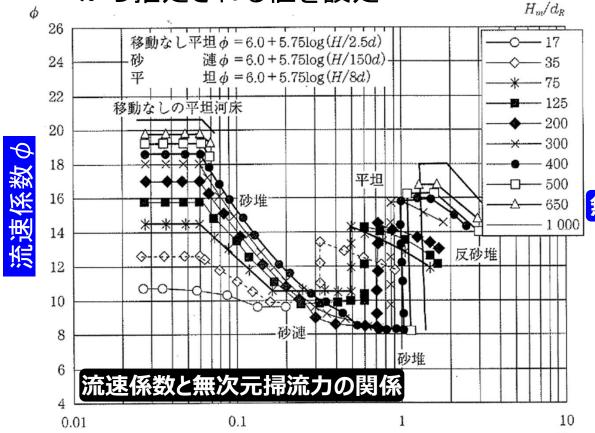
1. はじめに 安倍川 令和4年9月洪水(台風第15号)3

□流量観測状況

- 氾濫危険水位を超過する大規模な洪水
- 浮子流量観測は作業員の安全確保から中止

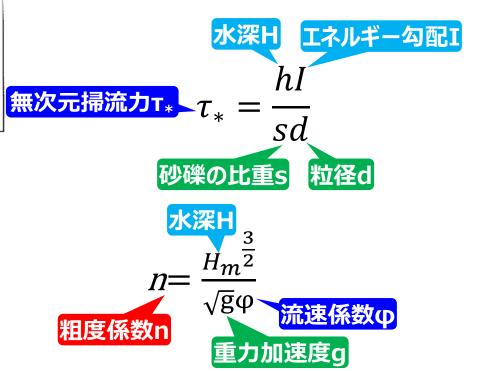
a) 梅ヶ島水源の森 山梨県 b) わさび山水源の森 天狗石山 静岡県 静岡県 突先山 竜爪山 駿河湾

年最大流量(安倍川 基準地点手越)


口流量推定の考え方

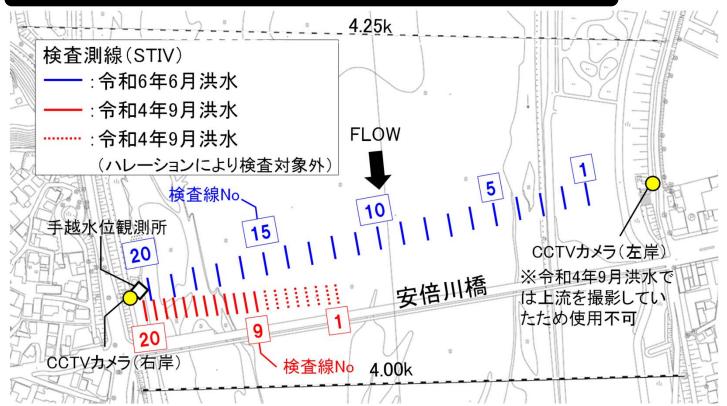
- 検証材料が観測水位のみの場合
 - ⇒流量と粗度係数の組み合わせは複数存在
- 検証材料が観測水位と観測流速の場合
 - ⇒流量と粗度係数の組み合わせを限定できる
 - ⇒検証流速は、データ取得の容易さから、画像解析から得る表面流速とした
- 水理解析モデル:表面流速を算定可能なモデル
 - ⇒準三次元流況解析

□河床の粗度係数


- 安倍川は網状河川、複雑な流況
 - ⇒計算メッシュ毎に水理量に対応した河床波

から推定される値を設定

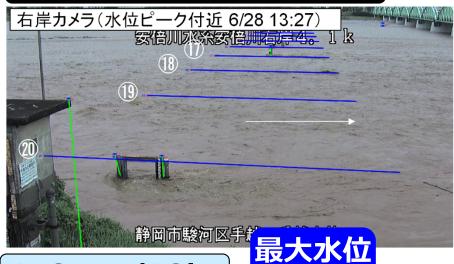
写真A 1.2 砂堆 (d=0.164 cm, r.=0.9, H/d=409, B/H=60)

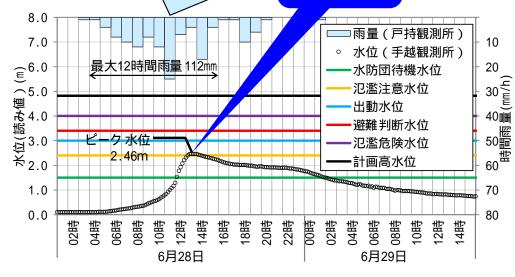


無次元掃流力T*

□2つの洪水による段階的検証

- 令和4年洪水のカメラ画像取得範囲は、右岸付近のみ。
- ⇒まず、全幅でカメラ画像を取得できた令和6年洪水に対して、本手法を適用し、 流量の再現性を検証


カメラ位置と検査測線位置(R6洪水、R4洪水)


2. 手法 (2)検証対象洪水

□洪水概要

令和6年洪水(線状降水帯)

112mm/12hr 2.46m

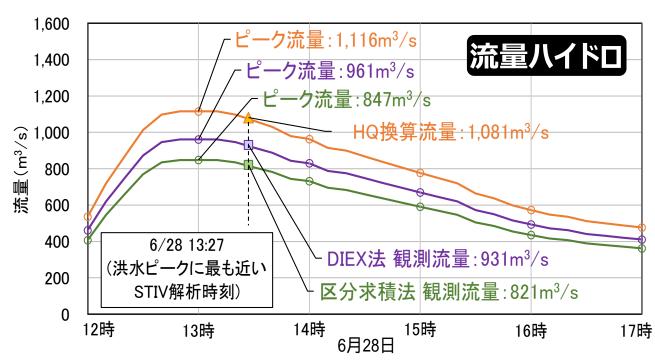
令和4年洪水(台風第15号)

270mm/12hr

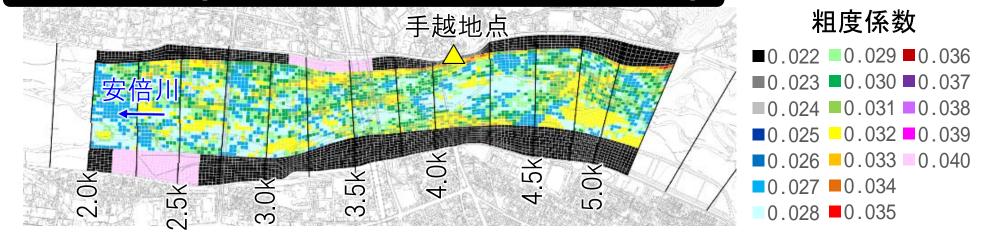
4.23m 8.0 7.0 10 最大12時間雨量270mm ──雨量(戸持観測所) 水位 (手越観測所) €^{6.0} 20 水防団待機水位 氾濫注意水位 出動水位 避難判断水位 氾濫危険水位 ·計画高水位 1.0 70 0.0 80 ちょう 19月23日 18部 20時 906時 08時 14時 16時 22時 02時 04時

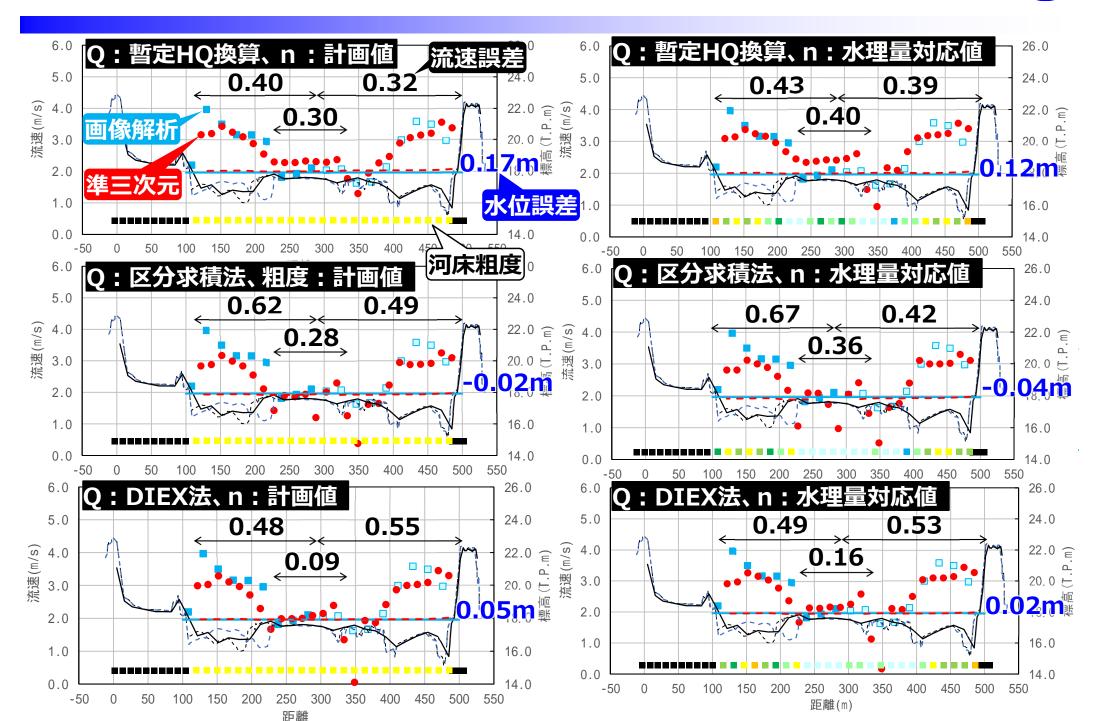
口流量候補

● HQ換算(R6暫定): 1,116m³/s


● 区分求積法:847m³/s

● DIEX法:961m³/s

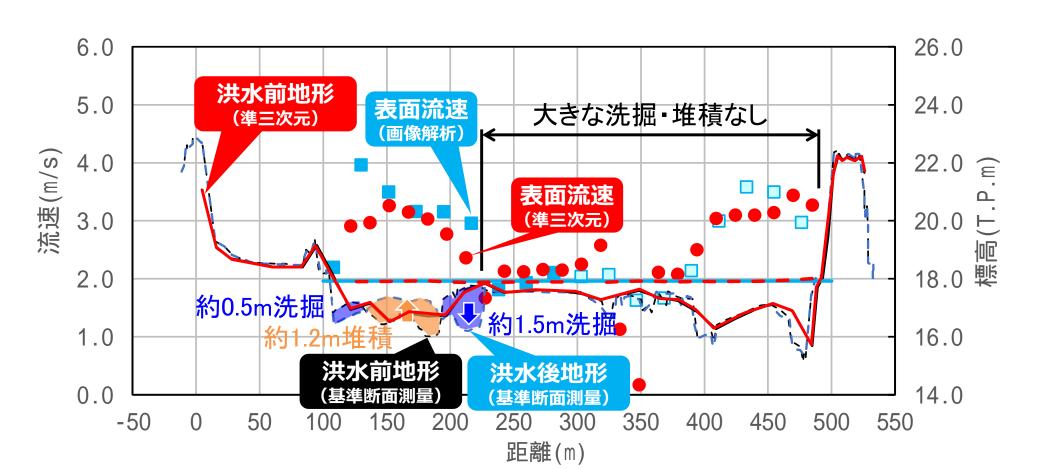

□面的測量データ


● 洪水前:あり

● 洪水後:なし

粗度分布の例(流量:DIEX法、粗度:水理量対応値)

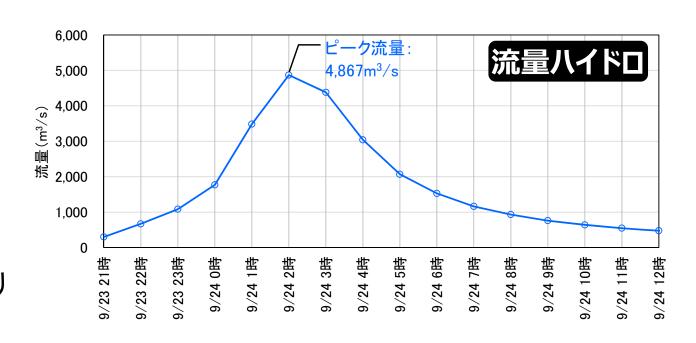
- □水位誤差と流速誤差から最適案を選定
 - ⇒流量: DIEX法961m³/s、河床の粗度係数: 水理量対応値
 - ⇒本手法により、流量再現が可能と判断した


再現性の検証結果

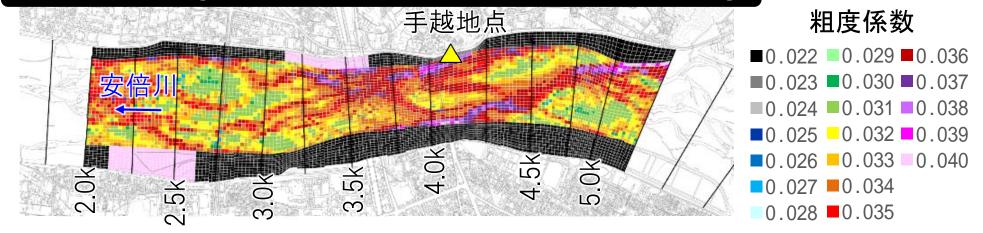
流量	河床の	水位誤差	流速誤差(平均二乗誤差)			
川里	粗度係数	(右岸側)(m)	左カメラ	中央砂州部	部 右カメラ	
R6暫定HQ式換算	計画値	0.17	0.40	0.30	0.32	
$(Qp=1,161m^3/s)$	水理量対応値	0.12	0.43	0.40	0.39	
区分求積法	計画値	-0.02	0.62	0.28	0.49	
$(Qp=847m^3/s)$	水理量対応値	-0.04	0.67	0.36	0.42	
DIEX法	計画値	0.05	0.48	0.09	0.55	
$(Qp = 961m^3/s)$	水理量対応値	0.02	0.49	0.16	0.53	

R6暫定HQ換算 よりも誤差小 区分求積法 よりも誤差小 水位を観測してい る右岸側で誤差小

- □準三次元流況解析と画像解析の流速乖離(横断方向200m付近)
 - 準三次元流況解析:洪水前地形で計算を実施している
 - 画像解析による流速:河床低下時の流速を捉えたと推定される
 - ⇒洪水前後の河床それぞれで準三次元流況解析を行い、検証することが望ましい

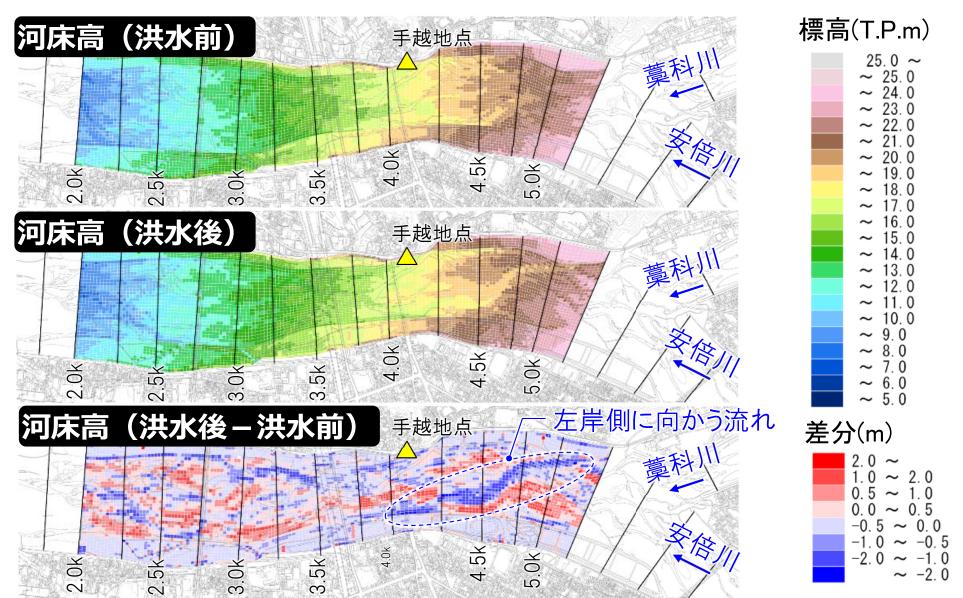

□流量候補

● 貯留関数法:4,867m³/s

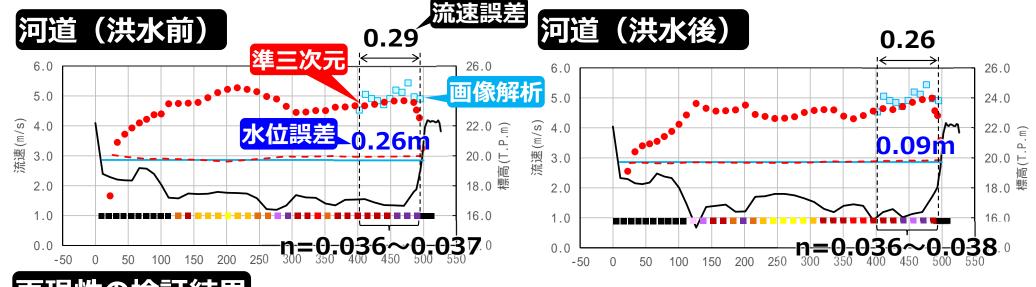

□面的測量データ

- 洪水前:あり
- 洪水後:あり

基準断面 洪水前後あり



粗度分布の例(流量:貯留関数法、粗度:水理量対応値)


□河床変化実態

●洪水前後の面的測量データにより左岸側に向かう流れが形成されたことを確認

3. 結果と考察 (2) 令和4年洪水の流量推定

- □水位誤差と流速誤差から最適案を選定
 - ⇒流量:4,867m³/s、河床の粗度係数:水理量対応値
 - ⇒洪水後河道の検証により、より確度の高い再現が可能

再現性の検証結果

	河床	流量	河床の 粗度係数	水位 (右岸 (n	≢側)	流速 (平均二美 右力)	···· 集誤差)
	洪水前	貯留関数法(Qp=4,867m³/s)	水理量対応値		0.26		0.29
	洪水後	貯留関数法(Qp=4,867m³/s)	水理量対応値		0.09		0.26

□本手法の利点

- 検証流速、計算流速ともに地形の影響が反映された流速である。⇒安倍川のような網状河川の複雑な流況下であっても有用
- 使用する観測データは、水位、カメラ画像、河床高といった現在の 観測技術により比較的容易に取得できる。
 - ⇒実務への適用性は高い

- □本手法実施にあたってのポイント
 - 地形測量:空間的には面的に実施、時間的には洪水前後に実施

- 口今後の課題
 - 撮影カメラ: 横断全幅の画像を取得可能な配置、ハレーション回避
 - 水位と流速の誤差評価:目安となる許容誤差の設定
- □将来的に期待される展開
 - 本手法による洪水検証事例の蓄積⇒当該河川における流速の更生係数の妥当性評価に資する
 - 基準点以外の地点への適用:任意地点、任意時刻の流量管理