

2024年9月奥能登豪雨を対象とした、広域における降雨流出・洪水氾濫解析 ¹ Reinfall Rupoff and Flood Inundation Simulation Over Wide Area for The Sontamber 2024 Olympia Light To Dairy 1. 2.

中尾朔也'•沼澤蓮音'•呉修一²

富山県立大学大学院環境・社会基盤工学専攻

富山県立大学環境・社会基盤工学科

Rainfall Runoff and Flood Inundation Simulation over Wide Area for The September 2024 Okunoto Heavy Rainfall Event

背景•目的•結論

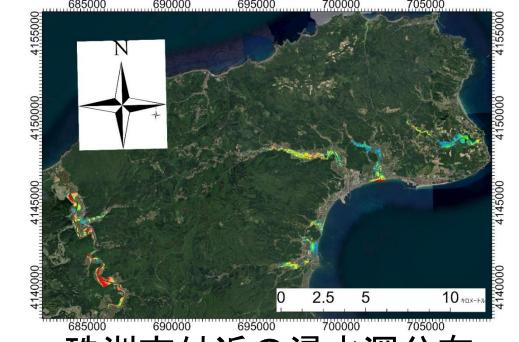
2024年1月1日に発生した能登半島地震に続いて9月21日の 豪雨により、奥能登では複数の中小河川で洪水氾濫が生じ た。本豪雨災害では、地震と豪雨が相次いで発生した複合 災害により大量の土砂・植生の流出、地盤変状による被害 の拡大が生じたものと考えられている。このような複合災害 特に中小河川での影響を明らかにすることは、今後の 地域防災・減災に向けた重要な課題である。

本研究の目的:

- 複数中小河川を対象に降雨流出・洪水氾濫解析を実施 することで奥能登豪雨の被災状況を再現する。
- 豪雨当時の出水状況や地震の影響について考察する。

- 複数河川で、初期解析段階ではあるが各サブ流域の ピーク流出高の分布などを把握することができた。
- 若山川・竹中川・折戸川で洪水氾濫解析を行い、現地 調査で得られた浸水深と比較することができた。
- 地震の影響として、若山川では堤防の局所的な侵食が 町野川では地盤の隆起よりも、土砂流入が被害の拡大 に影響している可能性があることを示すことができた。
- 河道部の1次元解析には限界があり、少なくとも2次元で の解析とともに、土砂の流入や侵食の考慮が必要

対象流域と結果のまとめ


降雨強度が強い北側に位置 する河原田川・塚田川 町野川・若山川において、 60mm/hを超えるピーク流出高

対象流域の諸元

ピーク流出高の分布および河道網

3						97,0000	
4140000		N			1		4140000
414			LATT				414
			CIVE		1		
5000							4135000
4135000					3		413
				1			
4130000		Lest	W	1			30000
4130		a de					4130
			XXX			STATE	
THE REAL PROPERTY.		1xxx	0	2.5	5	10 +0x-1	
-	650000	655000	660000	6650	000	670000	п-

輪島市付近の浸水深分布

	鵜飼川	12.
0 2.5 5 10 + DX - F/A	九里川尻川	9.1
寸近の浸水深分布	仁岸川	11.

竹中川・折戸川の解析結果

本論文では対象としていない、他河川にでも氾濫解析 を実施し被災状況の再現を行っている(左図)。

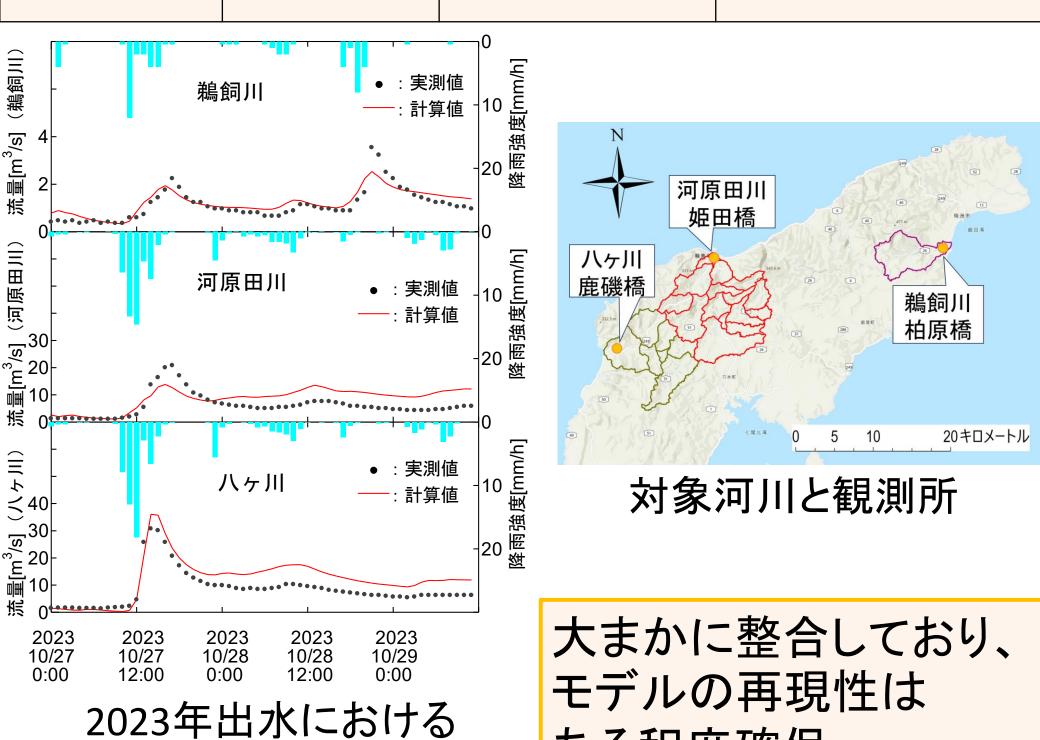
若山川

町野川

折戸川

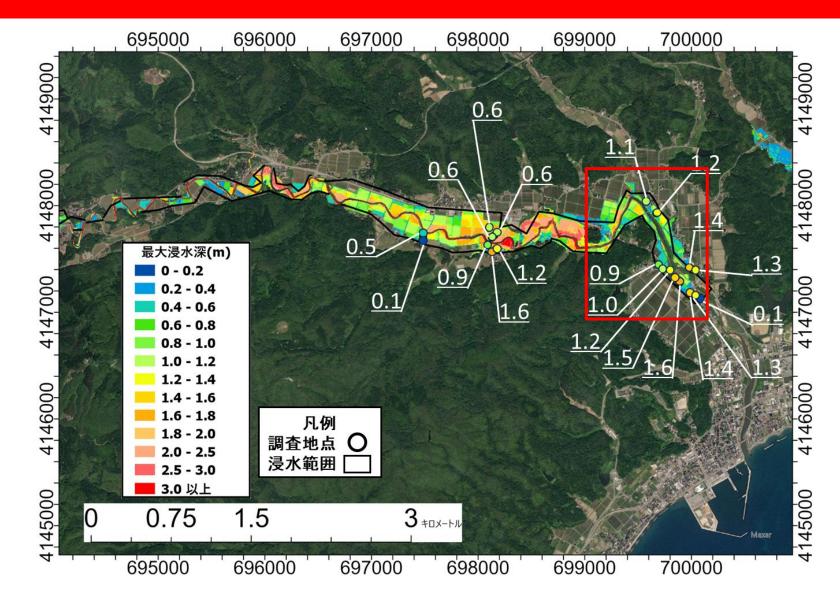
紀の川

河原田川


モデルの概要と検証結果

- 〇降雨流出モデル: 呉・山田(2024改)
 - ・サブ分布型の集中定数系モデル
 - 気象庁再解析雨量を入力値
 - ・従来より研究対象としている富山県小矢部川の
- キャリブレーションで得られたパラメータを、流出係数を1.0に 土層厚を20cm下げを対象とするすべての河川に適用
- <u>〇河道部の洪水追跡計算:1次元不定流計算</u>
 - ・粗度係数、横断面データは下表を参照
- 〇洪水氾濫計算:2次元不定流計算
 - マニングの粗度係数: 0.04で一様
 - ・地形データは下表を参照

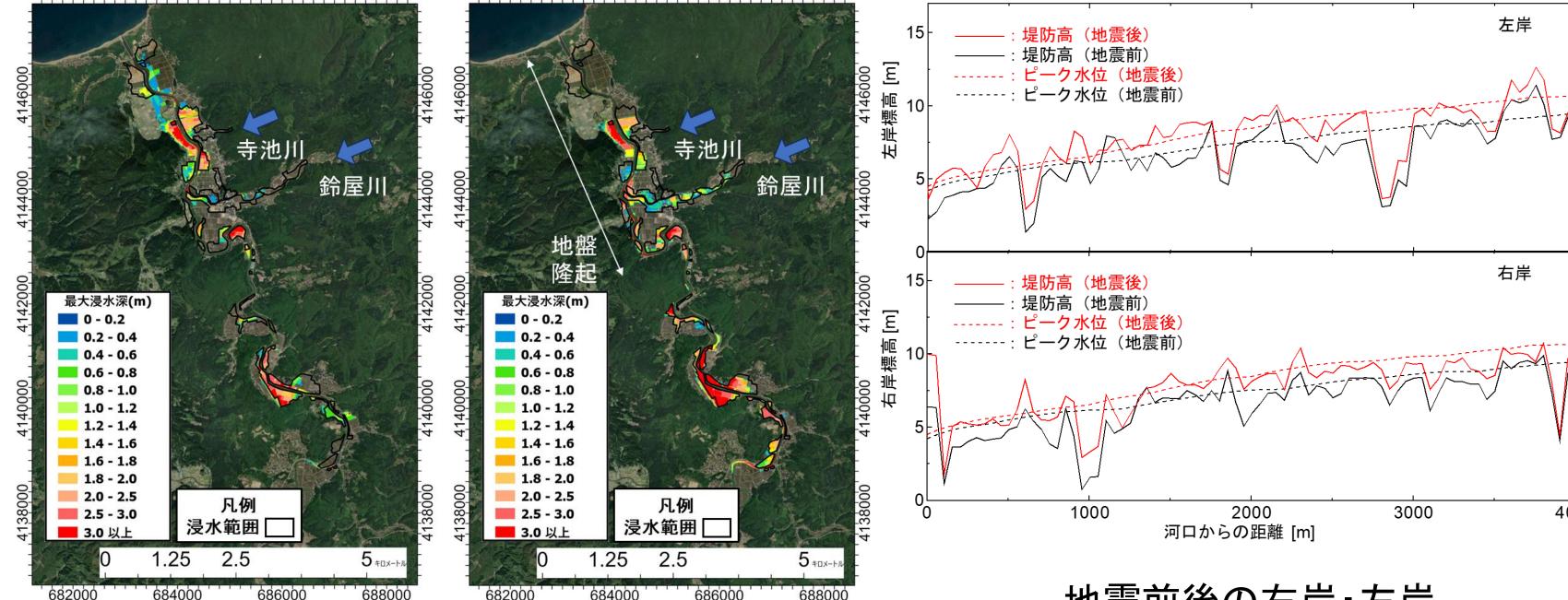
実測と計算流量の比較


各河川の計算条件

	対象流域	粗度係数	地形データ	横断面データ
	若山川	0.045	地震後5mメッシュ LPデータ	石川県提供の 横断面測量データ
	町野川 (地震前)	0.05	地震前5mメッシュ LPデータ	石川県提供の 横断面測量データ
	町野川 (地震後)	0.05	地震後5mメッシュ LPデータ	石川県提供の 横断面データを地震後 LPデータで補正
	竹中川	0.04	地震後5mメッシュ LPデータ	地震後1mメッシュLP データより作成
	折戸川	0.04	地震後5mメッシュ LPデータ	地震後1mメッシュLP データより作成

ある程度確保

若山川における洪水氾濫解析結果


最大浸水深の分布と浸水範囲

地震前後(左)と豪雨前後(右) の地形データの比較

- 現地調査結果および浸水範囲と大まかに整合
- 浸水が顕著に確認された河口付近右岸側の浸水域ま で氾濫が到達しておらず過小評価
- 局所的な侵食が被害を増大させた可能性

栗原橋付近での侵食

町野川における洪水氾濫解析結果

地震前(左)と地震後(右)の 洪水氾濫解析結果と浸水調査結果

地震前後の右岸・左岸 堤防および最大水位の縦断分布

現地調査の様子

若山川の侵食の状況

RTKおよび標尺を用いた浸水痕跡の測定 若山川の橋に堆積した流木

竹中川での最大浸水深の分布

最大浸水深(m)

- 現地調査と概ね整合しているが計算結果が過大 ■ 横断面データのの河床部の調整が必要か
- 折戸川での最大浸水深の分布

- 地震前の解析では鈴屋川の氾濫をほとんど再現できず
- 隆起の有無にかかわらず、町野川本川における調査結果の浸水範囲を良好に再現
- 地盤隆起よりも土砂の流入のが被害の拡大に影響していた可能性