環境DNAメタバーコーディングにおけるPCR阻害対策の手法比較

○釣健司*1·村岡敬子·服部啓太·田中孝幸(土木研究所)

1. はじめに

濁った環境で起こりやすいとされる →止水・半止水環境、河口域など

【背景】

• **PCR阻害:**環境DNAメタバーコーディングにおいて環境水中の PCR阻害物質によりDNAのPCR増幅が阻害される場合がある

偽陰性に繋がる

- ・検出感度が低下し、検出種が減少
- そもそもデータが得られない場合も

対策手法 by 環境DNA学会マニュアル v3.0

対策手法	特徴					
DNAの希釈	・PCR時に抽出DNA溶液を 希釈し阻害物質を低減 する △ DNA濃度も低下し 検出感度が低下する懸念 △ 希釈 倍率の検討 が必要					
DNAの精製 阻害物質除去キット)	・ PCR前にDNAを精製し 阻害物質を除去 ○ 希釈しないため 検出感度を低下させない △ 追加コストが発生 (キット費用+追加作業・人件費)					
PCR 酵素の変更 (耐阻害酵素の使用)	 ・ PCRに用いる試薬を阻害に強いものに変更する ○ 希釈しないため検出感度を低下させない △ 試薬コストが高くなる場合も ⑥ 特性が異なる場合がある(増幅効率、非特異的増幅とトレードオフ?) 					
・:特徴、〇:利点、△:	^{R点} いずれもPCR阻害の回避を保証するものではない、不確					

- ✔ 希釈は簡便でよく使われるが、検出感度が低下し偽陰性をもたらす懸念
- ✔ 偽陰性を低減するには希釈ではない手法、精製や酵素の変更が望ましい可能性
- ✔ 学会マニュアルが広く用いられるが、この手法を元にした比較事例はない

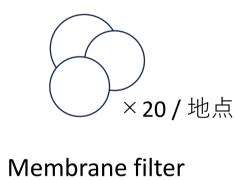
【目的】

PCR阻害が確認された複数地点を対象に 学会マニュアル記載の3手法について、

eDNAメタバーコーディングの検出種・検出種数の比較を行った

2. 材料 - 方法

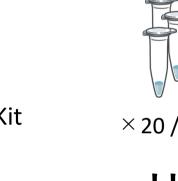
【調杏\ 占】


	表-1 調査地点と水質測定結果					確認されている地点を対象		
調査地点	河川距離標 (km)	рН	BOD (mg/L)	SS (mg/L)	TN (mg/L)	TP (mg/L)	クロロフィル a (ug/L)	
北上川大泉	43.8	7.5	0.8	4	0.87	0.039	-	
那珂川勝田橋*	8.0	7.7	0.9	5	1.30	0.069	2.0	
大分川弁天大橋*	1.1	8.0	2.4	8	0.55	0.076	24.0	* 感潮がみら

4. まとめ

- ✓ 精製や耐阻害酵素に比べ、希釈は相対存在量の少ない種の検出頻 度が低下、検出種数が少ない傾向(偽陰性)
- ✓ 精製や耐阻害酵素など希釈を伴わない手法は偽陰性の低減に有効
- ✓ ただし、精製や耐阻害酵素にも留意点はあるため、それぞれの手 **法・製品の特徴**をふまえ、**分析計画を立案**する必要がある
- ✔ 依然として水質とPCR阻害の関係は整理されておらず、水質と PCR阻害、その有効な対策手法・製品の検討が今後の課題である

【サンプリング・DNA抽出】



DNA抽出

抽出DNAの マージ

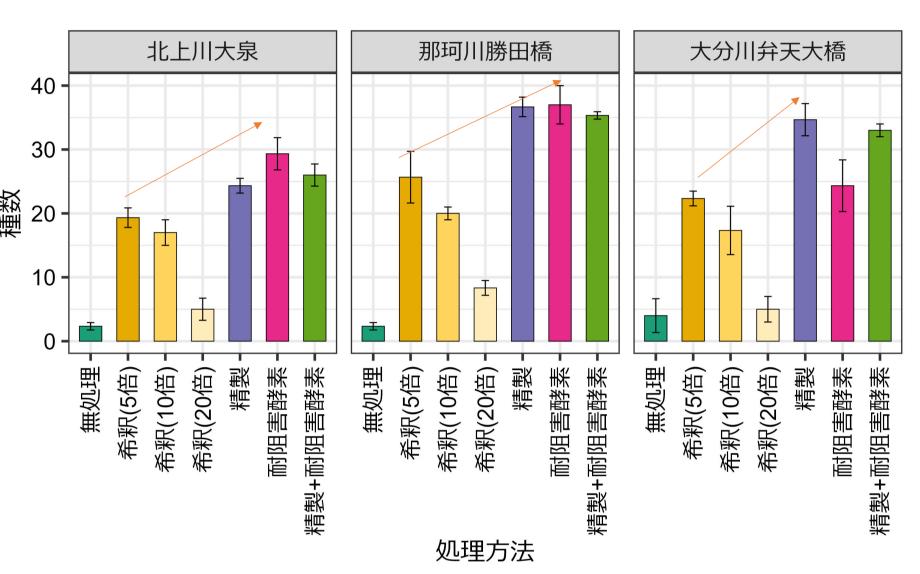
【抽出DNAの処理とメタバーコーディング】

ろ過

表-2 対策手法及びその処理条件

対策手法	抽出DNAの 希釈	抽出DNAの 精製	PCR酵素	
無処理	なし	なし	KAPA(標準)	
希釈(5倍)	5倍	なし	KAPA(標準)	
希釈(10倍)	10倍	なし	KAPA(標準)	
希釈(20倍)	20倍	なし	KAPA(標準)	
精製	なし	あり	KAPA(標準)	
耐阻害酵素	なし	なし	KOD One(耐阻害)	
精製+耐阻害酵素	なし	あり	KOD One(耐阻害)	
	①抽出DNA	に対する処理	②PCRに用いる酵素	

【使用試薬】


過去の調査でPCR阻害が

①抽出DNAに対し、希釈、精製、無処理のいずれかの処理を実施 ②処理済み抽出DNAに対し2種類の酵素を用いたPCRを実施

→①と②の組み合わせによって、無処理、希釈、精製、耐阻害酵素 及び精製+耐阻害酵素の4条件のメタバーコーディングを実施

3. 結果 - 考察

- (1)PCR阻害対策手法による環境DNA検出種数の違い
- ✔ いずれの手法もPCR阻害を低減できた(図-2)
- ✓ 希釈より精製や耐阻害酵素の方が種数が多い傾向

- ✔ 平均相対リード数(≒相対存在量)の少ない種は精製や耐阻害酵 素でのみ検出、検出頻度が高い傾向がみられた(図-3)
 - →希釈は相対存在量の少ない種の検出感度が低下し、検出種数が 減少する傾向(偽陰性)
- →偽陰性の低減には精製や耐阻害酵素など希釈を伴わない手法が 有効であると考えられる

(2) 精製と耐阻害酵素の留意点

- ✓ 精製 (PowerClean) は処理により約6~17%のDNAの損失がみられた(表-3)
 - →損失が大きい製品は**検出感度に影響**を与える可能性
- ✔ 耐阻害酵素(KOD One)は**非対象分類群の増幅**がみられた(**非特異的増幅**)
- **→**非特異的増幅により対象分類群の**シーケンス深度が不足**することも考えられる
- う各製品の特長を事前に把握しておく必要がある。

表-3 総DNAの定量結果(精製による回収率)

地点名	総DNA量	回収率	
也無扣	無処理	精製	137
北上川大泉	19.53 ± 0.4	18.43 ± 2.97	$\textbf{0.94} \pm \textbf{0.15}$
那珂川勝田橋	32.2 ± 0.3	26.77 ± 2.42	$\textbf{0.83} \pm \textbf{0.08}$
大分川弁天大橋	183.33 ± 3.06	163.33 ± 6.43	$\textbf{0.89} \pm \textbf{0.04}$

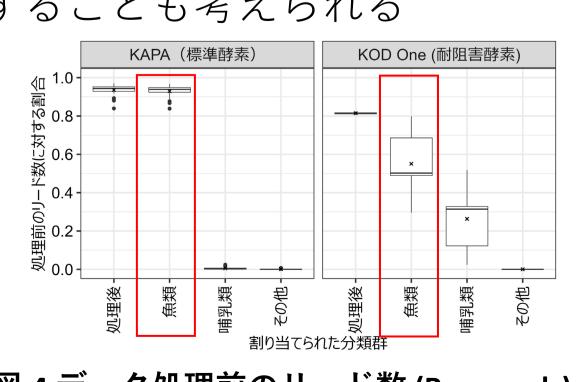


図-4 データ処理前のリード数 (Raw reads) に対する各分類群のリード数の割合

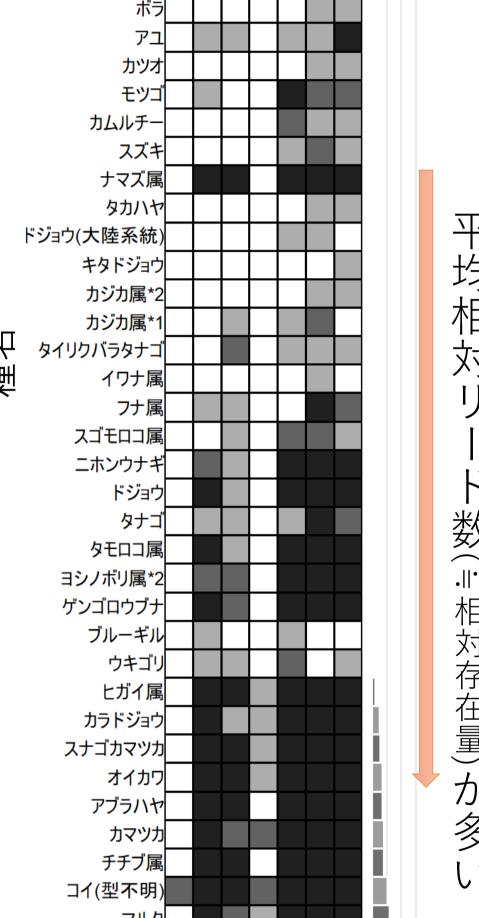


図-3 検出反復数に関する

ヒートマップ (北上川の例)

FVM