2023年度 河川技術に関するシンポジウム Room3

8バンドマルチスペクトル光学衛星画像を用いた 河道内土地被覆分類法の検討

山口大学大学院 創成科学研究科 〇江口 翔紀

- 山口大学大学院 創成科学研究科 大中 臨
- 山口大学大学院 創成科学研究科 教授 赤松 良久

研究背景

現状の課題

河道内の樹林化, 藪化, みお筋の固定化の進行
 詳細な流れ場の計算のための土地被覆情報が必要

河道内の地被状況とその経年変化の把握は、河川管理上で重要である.

河道内の土地被覆状況の 把握・モニタリングに有用である可能性

研究背景

研究目的, 実施内容

研究目的

WorldView-2の8バンドマルチスペクトル光学衛星画像を用いた 河道内土地被覆分類について,複数手法による比較検証を実施する.

研究対象

本研究では、反射率変換後の2種類の Worldview-2(Maxar Technologies)衛星画像を用いた.

11. 17	COASTAL	400 - 450 nm
天通	BLUE	$450-510 \ nm$
	GREEN	$510-580 \ nm$
波長域・8バンド(右表)	YELLOW	585 – 625 nm
	RED	630 – 690 nm
面皙 · 16bit	RED EDGE	705 – 745 nm
	NIR1	770 – 895 nm
	NIR2	860 – 1040 nm

①佐波川衛星画像

①佐波川衛星画像

佐波川流域

山口県

0

佐波川

佐波川大林

<u>佐波川流域</u>

4 / 15

山口県

島田川流域

②島田川衛星画像

NDVI法について

以下の手順で、NDVIを用いて分類した.(閾値は既往文献¹⁾を参考とした.)

4) H.G.Jones・R.A. Vaughan: 植生のリモートセンシング, 森北出版株式会社, pp.210-221, 2013

深層学習法について

ENVI(Harris Geospatial社)のDeep Learning Moduleを用いて分類した.

6/15

※本モジュールはCNNをベースとした地被分類が可能である.

決定木法について Rのrpartライブラリにより作成した決定木を用いて分類した.

リーチスケールでの検証方法

◆旧金波堰付近(9.4kpから10.8kp, 河道幅121mから234m)での詳細な検証 対象地点内で, 目視による分類結果と各手法による分類結果を比較した.

広域での検証方法

◆衛星画像の全体を対象とした広域における検証

各衛星画像で無作為に200地点を選定し、目視および各手法による分類結果を比較した.

リーチスケールでの検証結果

☑分類結果を見ると、各手法の分類精度は非常に良好であることが分かった.

リーチスケールでの検証結果

11 / 15

◆クロス集計表と各評価指標値

		NDVI法			
(甲凹	L:m)	水域	裸地	植生	未分類
	水域	54822.46	7159.62	405.76	0
目視分類	裸地	1866.24	58313.70	6280.11	0
	植生	291.78	7110.87	74775.69	0
		深層学習法			
(単位	L:m)	水域	裸地	植生	未分類
	水域	58216.78	3887.58	194.09	89.39
目視分類	裸地	1397.86	63589.03	1194.50	278.67
	植生	1076.22	15311.26	64277.14	1513.71
/ 1/ / 1 2			決定	木法	
(単位	2:m)	水域	裸地	植生	未分類
	水域	58411.08	260.87	3715.89	0
目視分類	裸地	1788.30	54991.62	9680.13	0
	植生	1045.51	5455.65	75677.17	0

☑平均F値は全手法で0.90程度となっており、分類精度が非常に高い.

	NDVI法 💋	深層学習法 🍄
	・植生域の分類精度が高い.	・水域の分類精度が高い。
	・水深が浅い箇所での誤分類 が多い傾向であった.	・枯草などの植生の活性が 低いピクセルで裸地と誤分
	0.14 水域(通常) NHR2 ● 0.08	する傾向であった.
		 ・どの地被にも分類されない ピクセルがわずかに存在し
	水域(ミクセル) ※水深が浅い箇所 0.16 0.14 豊の.12 0.10 0.06 0.14 豊の.12 0.10 0.16 0.14 豊の.12 0.10 0.06 0.14 豊の.12 0.10 0.16 0.14 豊の.12 0.10 0.06 0.14 豊の.12 0.10 0.16 0.14 豊の.12 0.10 0.06 0.14 0.07 0.00 0.08 0.00 0.08 0.09 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 000	・ミクセルにおいても, 誤分類 が少ない傾向であった.
ł	波長 (nm)	

	法定木法
	・水域の分類精度が高い
× 分類 い ∶した. ▶	 ・異なる地被カテゴリーの境界 付近(ミクセル)での誤分類が 多い傾向であった。 ※特に植生 ⇒ 裸地 ・平均F値が他手法と比較して、 最も高い結果であった。

広域での検証結果(全体評価)

12 / 15

☑全体的に島田川衛星画像での検証結果の方が分類精度が低かった.

考えられる理由 ... モデル作成に用いていないため / 解像度が粗いため / 多くの支川を含むため 等

NDVI法 💋	深層学習法 🍄	決定木法
・植生域の分類精度が高い	・他の手法と比較して分類精度	・佐波川衛星画像での分類精度
・前検証と同様に、水深が浅い	が最も高い. ・ 阜田川街星画像へ	は高いが、島田川衛星画像で の分類精度は非常に低い.
であった.	も、分類精度が高い。	・裸地の誤分類が多い.

広域での検証結果(誤分類地点)

13/15

図深層学習法は、教師データ中のミクセルについては高精度な分類が可能であり、 モデル作成に用いていない衛星画像においても、分類が比較的高精度であった。

決定木法 ▲ | ✓ 教師データとした衛星画像内では比較的分類精度が高かった.

これらの手法は、細かな反射率の影響を受けやすく、複数の地被カテゴリーの 反射特性が含まれるミクセルでの誤分類が多い傾向であった.

•	✓ 今回検討した手法の中で, 最も分類精度が高かった.
深層学習法 🍄	✓ 多様な教師データを作成することで、他の地被カテゴリーの反射特性 が含まれるミクセルについても比較的高精度で分類可能であった。

深層学習法は分類精度,汎用性ともに比較的優れていることが示された.

また,地上分解能2m程度の衛星画像であれば,リーチスケールでの検証区間のような 河道幅100m以上の河道区間においては,全ての手法で高精度な地被分類が期待できる.

資料の閲覧ありがとうございました.

15/15

◆本資料中の参考文献

- 1) H. G. Jones, R. A. Vaughan(監訳: 久米篤, 大政謙次): Remote sensing of vegetation, 森北出版株式会社, pp. 216-221, 2017.
- 2) 高橋陪夫, 奈佐原顕郎, 田殿武雄: 日本におけるJAXA高解像度土地利用土地被覆図, Map, 51, 2号, pp. 44-49, 2013.
- 3) 佐藤拓也, 岩見収二, 百瀬文人, 宮本仁志: 衛星画像とUAV空撮画像を併用した機械学習による河川 地被分類手法の検討, 河川技術論文集, 第25巻, pp. 199-204, 2019.
- 4) Xiaxue Wang, et al.: Land-Cover Classification of Coastal Wetlands Using the RF Algorithm for Worldview-2 and Landsat 8 Images, Remote sensing, 11(16), 2019.

